2019-I01-013369

INFORME N° 00147-2019-OEFA/DEAM-STEC

A : FRANCISCO GARCÍA ARAGÓN

Director de Evaluación Ambiental

DE : LÁZARO WALTHER FAJARDO VARGAS

Subdirector de la Subdirección Técnica Científica

LUIS ANGEL ANCCO PICHUILLA

Coordinador de Evaluaciones Ambientales en Minería y

Energía

ASUNTO : Vigilancia ambiental en el área de influencia de la unidad

minera Arasi, de Aruntani S.A.C., ubicada en el

departamento de Puno - época de avenida.

CÓDIGO DE ACCIÓN : 0018-3-2019-401

CUE : 2019-02-0006

REFERENCIA : Planefa 2019

FECHA : Lima, 27 de junio de 2019

Tenemos el agrado de dirigirnos a usted para informarle lo siguiente:

1. INFORMACIÓN GENERAL

Los aspectos generales de la vigilancia ambiental realizada en el área de influencia de la Unidad Minera Arasi (en adelante, UM Arasi) de Aruntani S.A.C. son presentados en la Tabla 1 1

Tabla 1.1. Información general respecto a la actividad realizada

a.	Zona evaluada	Distrito de Ocuviri, provincia de Lampa, departamento de Puno			
b.	Unidades fiscalizables en la zona de estudio o actividades económicas	Área de influencia de la unidad minera Arasi de Aruntani S.A.C., en las microcuencas Luchusani, Azufrini y Chacapalca			
c.	Problemática identificada	Afectación de los cuerpos de agua por influencia de las actividades realizadas por la unidad minera Arasi			
d.	La actividad se realizó en el marco de	Planefa 2019 / POI 2019			
e.	Tipo de evaluación	Vigilancia ambiental			
f.	Periodo de ejecución	Del 31 de marzo al 13 de abril de 2019			

Profesionales que aportaron a este documento:

Tabla 1.2. Listado de profesionales

N.°	Nombres y Apellidos	Profesión	Actividad desarrollada
1	Lázaro Walter Fajardo Vargas	Ing. Químico	Gabinete
2	Luis Ángel Ancco Pichuilla	Ing. Químico	Gabinete
3	Lisveth Madeleine Valenzuela Mendoza	Bióloga	Campo y gabinete
4	Santos Demetrio Ramos Canales	Ing. Ambiental	Campo y gabinete
5	Diego Nieto Palacios	Biólogo	Campo

2. DATOS DE LA ACTIVIDAD REALIZADA

Los parámetros evaluados en la vigilancia ambiental realizada en el área de influencia de la UM Arasi se presentan en la Tabla 2.1.

Tabla 2.1. Parámetros evaluados

Matriz evaluada	Parámetros evaluados	Cantidad de puntos
Agua superficial	T, pH, CE, OD, metales totales, sulfatos, cianuro libre*, cianuro wad* y cianuro total*	19
Agua subterránea	T, pH, CE, OD, metales totales, sulfatos, metales disueltos y sólidos suspendidos totales	1
Agua residual industrial	T, pH, CE, OD, metales totales, sulfatos, cianuro libre*, cianuro wad* y cianuro total*	3
Efluentes mineros	T, pH, CE, OD, metales totales, sulfatos, metales disueltos y sólidos suspendidos totales	2
Sedimentos	Metales totales	15

^(*) Parámetro evaluado solo en los puntos cercanos al PAD de lixiviación Jessica

3. OBJETIVO

Evaluar la calidad ambiental de los componentes agua y sedimento en el área de influencia de la Unidad Minera Arasi en la época de avenida.

4. METODOLOGÍA

En esta sección se proporciona la información de la metodología aplicada en la vigilancia ambiental en el área de influencia de la UM Arasi.

4.1 Protocolos de monitoreo

Los protocolos de monitoreo nacionales e internacionales; así como, las guías que se utilizaron para la vigilancia ambiental en el área de influencia de la UM Arasi se describen en la Tabla 4.1.

Tabla 4.1. Protocolos de monitoreo utilizados para el monitoreo de agua y sedimento

Matriz	Protocolo	Sección	País	Institución	Dispositivo legal	Año
Agua superficial	Protocolo Nacional de Monitoreo de la Calidad de los Recursos Hídricos Superficiales	6.14 Medición de los parámetros de campo (pp. 24–25) 6.15 Procedimiento para la toma de muestras (pp. 25–28) 6.16 Preservación, llenado de la cadena de custodia, almacenamiento, conservación y transporte de las muestras (pp. 28–30) 6.17 Aseguramiento de la calidad del monitoreo (pp. 30–31)	Perú	Autoridad Nacional del Agua (ANA)	R.J. N.°010- 2016-ANA	2016
Agua subterránea	National Field Manual for the Collection of Water-Quality Data	A.1 Preparations for water sampling	EE. UU.	U.S. Geological		2015

Matriz	Protocolo	Sección	País	Institución	Dispositivo legal	Año
				Survey (USGS)		
Agua residual industrial y efluentes mineros	Protocolo de monitoreo de calidad de agua sub sector – minería	Sección 2.0. Estaciones de muestreo	Perú	Dirección General de Asuntos Ambientales Mineros (DGAAM) del MINEM	R.D. N.° 004- 94-EM/DGAA	1994
Medición de	Protocolo nacional para el monitoreo de la calidad de los recursos hídricos superficiales	Sección 6.12	Perú	Autoridad Nacional del Agua (ANA)	R.J. N.º 010- 2016-ANA	2016
caudal: agua superficial	Manual de hidrometría	Todo el manual	Perú	Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI)		2016
	Procedimiento para el muestreo de aguas y sedimentos para la determinación de metales.	Sección 7.3, 8, y 9.2	Colombia	Ministerio de Ambiente, Vivienda y Desarrollo Territorial		2011
Sedimento	Manual técnico, Métodos para colección, almacenamiento y manipulación de sedimento para análisis químicos y toxicológicos¹	Capítulo 3. Colección de sedimentos enteros. Capítulo 5. Manipulación de sedimentos	EE. UU.	Agencia para la Protección Ambiental (EPA)		2001
	Muestreo de sedimentos	Sección 2, 3.2.2, 4.4.2-4 y 7	EE. UU.	Agencia para la Protección Ambiental (EPA)		2001
	Procedimiento de Operación Estándar– muestreo de sedimento ²	Ítem 7. Preservación de Muestras, Contenedores, Manipulación y Almacenamiento	EE. UU.	Agencia para la Protección Ambiental (EPA)		2003

4.2 Ubicación de los puntos

La ubicación de los puntos de monitoreo ambiental de agua y sedimento se presenta en la Tabla 4.2, de los que se evaluaron 25 puntos de agua y 15 de sedimentos.

Tabla 4.2. Puntos de monitoreo de la vigilancia ambiental en el área de influencia de la UM Arasi

	Cuerpo de	agua o cuerpo Matriz Código Código 19L				Descripción	
N.º	U			Código Este			Altitud (m s.n.m.)
				(m)	(m)		
1	Quebrada Luchusani	Agua superficial	E-1	306704	8312634	4812	Quebrada Luchusani (naciente) aguas arriba de un bofedal

¹ Agencia de protección ambiental EPA: Technical Manual, Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses. Recuperado de https://clu-in.org/download/contaminantfocus/sediments/methods-for-collection-epa-manual.pdf

² Environmental Protection Agency (EPA). Standard Operating Procedure-SOP #2016, Sediment Sampling. Recuperado de https://www.epa.gov/sites/production/files/documents/r8-src_eh-02.pdf.

N.º	Cuerpo de agua o	Matriz	Código	Coordenadas UTM WGS 84 – Zona 19L		Altitud	Descripción
	cuerpo receptor			Este (m)	Norte (m)	(m s.n.m.)	·
2	Afloramiento subterráneo	Agua superficial	SW-08	306416	8312724	4828	Poza N° 1 del subdrenaje del pad Jessica
3	Afloramiento subterráneo	Agua superficial	SW-09	306189	8312914	4802	Poza N° 2 del subdrenaje del pad Jessica
4	Afloramiento subterráneo	Agua residual industrial	SW-10	306046	8312623	4784	Poza N°3 del subdrenaje de la poza de mayores eventos del pad Jessica.
5	Quebrada Luchusani	Agua superficial Sedimentos	EE-1	305633	8312284	4757	Confluencia de la quebrada Luchusani y el agua de las pozas de subdrenaje N° 1 y N° 2
6	Quebrada Luchusani	Agua superficial Sedimentos	EE-3	304600	8312241	4666	Quebrada Luchusani, aguas arriba de la descarga proveniente del botadero Jessica
7	Afloramiento subterráneo	Agua residual industrial	EE-2	304571	8312235	4668	Tubería que capta las surgencias de agua provenientes de la zona donde se ubica el botadero Jessica
8	Quebrada Luchusani	Agua superficial Sedimentos	EE-4	304390	8312140	4663	Quebrada Luchusani, aguas abajo de la descarga proveniente del botadero Jessica
9	Quebrada Huarucani	Agua superficial Sedimentos	E-4	303524	8311327	4589	Quebrada Huarucani, 100 m aguas arriba de la confluencia con la quebrada Luchusani
10	Río Huarucani	Agua superficial Sedimentos	E-5	303417	8311397	4585	Río Huarucani, 200 m aguas abajo de la confluencia de las quebradas Luchusani y Huarucani
11	Río Azufrini	Agua superficial Sedimentos	EE-11	301412	8311672	4492	Río Azufrini, aguas arriba del vertimiento VBOT-3.
12	Quebrada sin nombre	Agua residual industrial	EW-4	301573	8312520	4601	Flujo de agua (drenaje) con dirección norte-sur, proveniente de la zona intermedia entre el tajo Valle y el botadero N° 3
13	Quebrada sin nombre	Agua superficial	EW-1	301496	8312011	4538	Quebrada sin nombre, ubicada al sureste del botadero N°3
14	Quebrada sin nombre	Agua superficial Sedimentos	SW-26	301365	8311688	4487	Quebrada sin nombre, al lado del vertimiento VBOT-3
15	Río Pataqueña	Agua superficial Sedimentos	E-11	300952	8310155	4475	Río Pataqueña, 100 m al suroeste del campamento Arasi
16	Río Azufrini	Agua superficial Sedimentos	E-10	300570	8311660	4450	Río Azufrini, 85 m aguas arriba de la confluencia con el río Pataqueña
17	Río Chacapalca	Agua superficial Sedimentos	M-1	300007	8312250	4449	Río Chacapalca, 190 m aguas arriba del vertimiento V-1
18	Río Chacapalca	Agua superficial Sedimentos	M-2	299956	8312452	4448	Río Chacapalca, 150 m aguas abajo del vertimiento V-1
19	Río Chacapalca	Agua superficial Sedimentos	E-41	299929	8312879	4427	Río Chacapalca, 100 m aguas abajo del afloramiento subterráneo ubicado abajo del botadero N°1, antes de la zona del embalse
20	Río Chacapalca	Agua superficial Sedimentos	EE-14	299882	8313002	4433	Río Chacapalca, ubicado en el embalse.
21	Río Chacapalca	Agua superficial Sedimentos	EE-15	299712	8313740	4408	Río Chacapalca, agua abajo del vertimiento PDC-A
22	Río Chacapalca	Agua superficial Sedimentos	E-39	299125	8315421	4381	Río Chacapalca, a 450 m de la confluencia de la Quebrada Joillone con el río Chacapalca

N.º	Cuerpo de agua o	I Matriz I Codido I 191 I		Matriz Códig		WGS 84 – Zona A		Altitud	Descripción
	cuerpo receptor			Este (m)	Norte (m)	(m s.n.m.)	·		
23	Agua subterránea (piezómetro)	Agua subterránea	PZ-1	304598	8312301	4687	Piezómetro ubicado al pie del botadero Jessica		
24	Efluente minero	Efluente minero	V-J	304568	8312227	4664	Vertimiento de la zona del botadero Jessica.		
25	Efluente minero	Efluente minero	V-1	299980	8312342	4450	Vertimiento de la zona del botadero Andrés.		

4.3 Equipos utilizados y metodologías de análisis

Los equipos utilizados en la ejecución de la vigilancia ambiental de la UM Arasi se presentan en la Tabla 4.3.

Tabla 4.3. Equipos utilizados en el monitoreo de la vigilancia ambiental en la UM Arasi

Matriz	Parámetro	Equipo	Marca	Modelo
Agua superficial, agua subterránea, agua residual industrial y efluentes	pH, OD, CE y T	Equipo multiparámetro	HACH	HQ40d
Agua superficial	Caudal	Correntómetro	Global Water	FP111
Agua subterránea	Profundidad	Sonda para nivel piezométrico	Solinst	122
	-	Cámara fotográfica digital	Canon	POWERSHOT D30BL
Agua y sedimentos	-	Equipo de georreferenciación satelital (GPS)	Garmin	MONTANA 680

⁽⁻⁾ No corresponde

La Tabla 4.4 presenta los parámetros, métodos de ensayo y técnicas empleadas en el análisis de agua y sedimentos, a través de un laboratorio acreditado por el Inacal.

Tabla 4.4. Métodos para el análisis de agua y sedimentos

Matriz	Parámetro	Método	Técnica Empleada
	Metales totales por ICP-MS (incluido Hg)	EPA 6020A, Rev. 1 February	Espectrometría de emisión atómica con
	Metales disueltos por ICP-MS (incluido Hg)	2007	plasma acoplado inductivamente
	Sulfato(s)	EPA METHOD 30.1 Rev. 1, 1997 (validado). 2015	Determination of Inorganic Anions in Driking Water by Ion Chromatography
Agua superficial	Cianuro Libre	EPA METHOD 9016, Rev. 0, 2010	Free Cyanide in Water, Soils and Soild Wastes by Microdiffsion
	Cianuro Total	SMEWW-APHA-AWWA- WEF Part 4500-CN ⁻ C, 22nd Ed. 2012	Cyanate: Colorimetric Method
	Cianuro WAD	SMEWW-APHA-AWWA- WEF Part 4500-CN ⁻ I,E, 23 rd Ed. 2017	Cyanide. Weak Acid Dissociable Cyanide. Colorimetric Method
	Metales totales por ICP-MS (incluido Hg)	EPA 6020A, Rev. 1 February	Espectrometría de emisión atómica con
Agua subterránea	Metales disueltos por ICP-MS (incluido Hg)	2007	plasma acoplado inductivamente
	Sulfato(s)	EPA METHOD 30.1 Rev. 1, 1997 (validado). 2015	Determination of Inorganic Anions in Driking Water by Ion Chromatography

Matriz Parámetro		Método	Técnica Empleada
	Sólidos totales suspendidos	SMEWW-APHA-AWWA- WEF Part 2540 D, 22nd Ed. 2012	Solids: Total Suspende Solids Dried at 103-105 °C
	Metales totales por ICP-MS (incluido Hg)	EPA 6020A, Rev. 1 February	Espectrometría de emisión atómica con
	Metales disueltos por ICP-MS (incluido Hg)	2007	plasma acoplado inductivamente
Efluente minero	Sulfato(s)	EPA METHOD 30.1 Rev. 1, 1997 (validado). 2015	Determination of Inorganic Anions in Driking Water by Ion Chromatography
	Sólidos totales suspendidos	SMEWW-APHA-AWWA- WEF Part 2540 D, 22nd Ed. 2012	Solids: Total Suspende Solids Dried at 103-105 °C
	Metales totales por ICP-MS (incluido Hg)	EPA 6020A, Rev. 1 February	Espectrometría de emisión atómica con
	Metales disueltos por ICP-MS (incluido Hg)	2007	plasma acoplado inductivamente
	Sulfato(s)	EPA METHOD 30.1 Rev. 1, 1997 (validado). 2015	Determination of Inorganic Anions in Driking Water by Ion Chromatography
Agua residual industrial	Cianuro Libre	EPA METHOD 9016, Rev. 0, 2010	Free Cyanide in Water, Soils and Soild Wastes by Microdiffsion
	Cianuro Total	SMEWW-APHA-AWWA- WEF Part 4500-CN ⁻ C, 22nd Ed. 2012	Cyanate: Colorimetric Method
	Cianuro WAD	SMEWW-APHA-AWWA- WEF Part 4500-CN ⁻ I,E, 23 rd Ed. 2017	Cyanide. Weak Acid Dissociable Cyanide. Colorimetric Method
	Mercurio total	EPA 7471 B, Rev 2, February 2007	Mercury in solid or semisolid waste (Manual Cold-Vapor technique)
Sedimentos	Metales por ICP OES	EPA 3050 B:1996 / EPA 6010 B: 1996	Acid Digestion of Sediments. Sludges and soils / Inductively Coupled Plasma- Atomic Emission Espectrometry

Fuente: Informe de Ensayo N.º 23252/2019 ALS Perú S.A.C., Informe de Ensayo N.º 23253/2019 ALS Perú S.A.C., Informe de Ensayo N.º 23256/2019 ALS Perú S.A.C.

4.4 Procesamiento de datos

4.4.1 Agua y sedimento

Los resultados obtenidos, tanto en campo como los analíticos de laboratorio, pasaron por filtros de calidad que aseguraron la inexistencia de datos erróneos; de esta manera, fueron incorporados a un sistema de control de datos. Luego, fueron digitalizados y ordenados en una base de datos (hojas de cálculo), para posteriormente graficarlos en barras y/o líneas, según los criterios de evaluación presentados.

4.5 Criterios de evaluación

4.5.1 Agua

Los cuerpos de agua superficiales se clasificaron dentro de la categoría 3 de los Estándares Nacionales de Calidad Ambiental (ECA) para Agua (en adelante, ECA para Agua) establecido en el Decreto Supremo N.º 015-2015-MINAM (Tabla 4.5), según lo coordinado con la Dirección de Supervisión en Energía y Minas en el acta firmada el 26 de abril de 2019 (Anexo 9).

Tabla 4.5. Categoría de comparación empleada para calidad de agua

Cuerpo de agua	Categoría de comparación	Normativa de comparación	
Quebrada Luchusani			
Quebrada Huarucani			
Río Huarucani		Dooroto Supromo	
Río Azufrini	Categoría 3	Decreto Supremo N.º 015-2015-MINAM	
Quebrada sin nombre			
Río Pataqueña			
Río Chacapalca			
Afloramiento subterráneo	Categoría 3 (referencialmente)	Decreto Supremo	
Agua subterránea (piezómetro)	Categoria 3 (referencialmente)	N.° 015-2015-MINAM	

Asimismo, los resultados obtenidos de los puntos de muestreo de agua subterránea (piezómetro) y afloramientos subterráneos fueron comparados de forma referencial con la normativa mencionada, cuyos valores se presentan en la Tabla 4.6.

Tabla 4.6. Estándares de comparación para agua superficial de la categoría 3

Tabla 4.6. Estandares de co	abia 4.6. Estandares de comparación para agua superficial de la categoria 3						
	Unidad	ECA para agua					
		D.S. N.° 015-2015-MINAM					
Parámetro		Categoría 3					
		D1: Riego de cultivo de tallo alto y bajo	D2: Bebida de animales				
FISICO-QUÍMICOS							
Potencial de hidrógeno (pH)	Unidad de pH	6,5-8,5 $6,5-8,4$					
Temperatura	°C	Δ3 Δ3					
Oxígeno disuelto	mg/L	≥4	≥5				
Conductividad	μS/cm	2500	5000				
Bicarbonatos	mg/L	518					
Cloruros	mg/L	500					
Cianuro wad	mg/L	0,1	0,1				
Sulfatos	mg/L	1000	1000				
INORGÁNICOS							
Aluminio	mg/L	5	5				
Arsénico	mg/L	0,1	0,2				
Bario	mg/L	0,7					
Berilio	mg/L	0,1	0,1				
Boro	mg/L	1	5				
Cadmio	mg/L	0,01	0,05				
Cobre	mg/L	0,2	0,5				
Cobalto	mg/L	0,05	1				
Cromo total	mg/L	0,1	1				
Hierro	mg/L	5					
Litio	mg/L	2,5	2,5				
Magnesio	mg/L	250					
Manganeso	mg/L	0,2	0,2				
Mercurio	mg/L	0,001	0,01				
Níquel	mg/L	0,2	1				
Plomo	mg/L	0,05	0,05				
Selenio	mg/L	0,02	0,05				
Zinc	mg/L	2	24				

^{--:} Valores no contemplados en los Estándares de Calidad Ambiental (ECA) para Agua.

Respecto a los efluentes mineros registrados, fueron comparados con los Límites Máximos Permisibles aprobado mediante D. S. N.º 010-2010-MINAM (Tabla 4.7), según lo coordinado con la Dirección de Supervisión en Energía y Minas en el acta firmada el 26 de abril de 2019 (Anexo 9).

Tabla 4.7. Límites Máximos Permisibles para efluente mineros

Parámetro	Unidad	LMP para la descarga de efluentes líquidos de Actividades Minero Metalúrgicas Decreto Supremo N.º 010 -2010-MINAM Límite en cualquier momento			
FISICO-QUÍMICOS					
Potencial de hidrógeno (pH)	Unidad de pH	6 – 9			
Sólidos totales en suspensión	mg/L	50			
Cianuro total	mg/L	1			
INORGÁNICOS					
Arsénico (As)	mg/L	0,1			
Cadmio (Cd)	mg/L	0,05			
Cobre (Cu)	mg/L	0,5			
INORGÁNICOS					
Hierro disuelto (Fe)	mg/L	2			
Plomo (Pb)	mg/L	0,2			
Mercurio (Hg)	mg/L	0,002			
Zinc (Zn)	mg/L	1,5			

4.5.2 Sedimento

Debido a que no se cuenta con legislación nacional sobre estándares de calidad para sedimento, la comparación de los resultados de concentración de metales totales se realizó de manera referencial utilizando los valores de la guía de calidad ambiental para sedimento en cuerpos de agua dulce de Canadá (*Canadian Environmental Quality Guidelines - Sediment Quality Guidelines for Protection of Aquatic Life - Fresh water*)³, según lo coordinado con la Dirección de Supervisión en Energía y Minas en el acta firmada el 26 de abril de 2019 (Anexo 9), que define dos valores límites:

- Interim Sediment Quality Guidelines-ISQG (valores guía provisional de calidad de sedimento): representa el nivel por debajo del cual no se esperan efectos biológicos adversos en los macroinvertebrados bentónicos (Tabla 4.8).
- Probable Effect Level-PEL (nivel de efecto probable): representa el nivel de concentración química por encima del cual usualmente o siempre está asociado a efectos biológicos adversos en los macroinvertebrados bentónicos (Tabla 4.8).

Tabla 4.8. Valores de comparación para la calidad de sedimento de aguas continentales

Normativa	Parámetro	Unidad	Valor ISQG	Valor PEL
Canadian Sediment Quality Guidelines for the Protection of Aquatic Life	Arsénico	mg/kg MS	5,9	17
	Cadmio	mg/kg MS	0,6	3,5
	Cobre	mg/kg MS	35,7	197
	Cromo	mg/kg MS	37,3	90
	Mercurio	mg/kg MS	0,17	0,486
	Plomo	mg/kg MS	35	91,3
	Zinc	mg/kg MS	123	315

Fuente: Consejo Canadiense de Ministros de Medio Ambiente (CCME)

ISQG: Nivel por debajo del cual no se espera efectos biológicos adversos.

PEL: Nivel de efecto probable.

5. RESULTADOS Y ANÁLISIS

Con la finalidad de mejorar la interpretación y el análisis de los resultados de agua y sedimentos, el estudio se dividió en 2 zonas correspondientes a las microcuencas Huarucani y Chacapalca, las cuales se detallan a continuación:

³ Canadian Environmental Quality Guidelines. Sediment. Quality Guidelines for Protection of Aquatic Life – Fresh water (Valores guía de calidad ambiental de Canadá para sedimentos en cuerpos de agua dulce). Disponible en: http://www.ccme.ca/en/resources/canadian_environmental_quality_quidelines/. Consultado el 19 de enero de 2017.

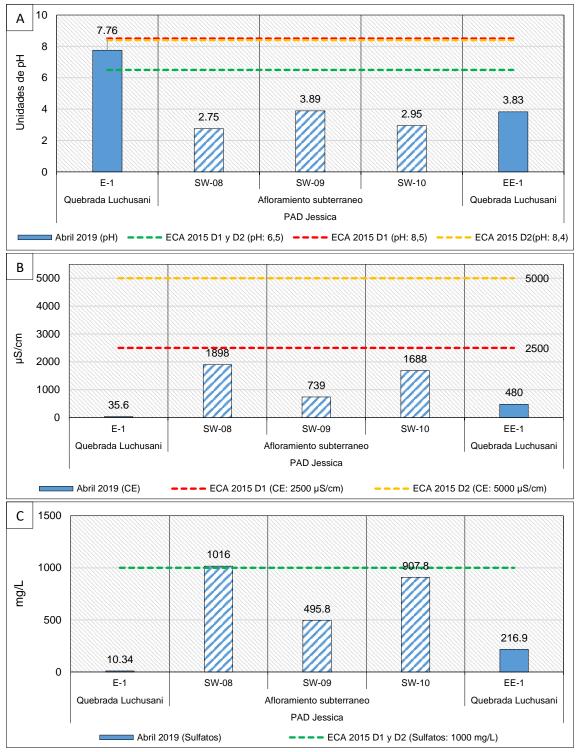
- Zona 1 Microcuenca Huarucani: conformada por las quebradas Luchusani (E-1, EE-1, EE-3 y EE-4) y Huarucani (E-4), el río Huarucani (E-5), agua subterránea (piezómetro PZ-1), afloramientos subterráneos (SW-08, SW-09, SW-10 y EE-2) y el efluente minero V-J. Asimismo, en esta zona se encuentran el PAD de lixiviación y botadero Jessica.
- Zona 2 Microcuenca Chacapalca: conformada por las quebradas sin nombre (EW-4, EW-1 y SW-26), los ríos Azufrini (EE-11 y E-10), Pataqueña (E-11) y Chacapalca (M-1, M-2, E-41, EE-14, EE-15 y E-39), y el efluente minero V-1. En esta zona se encuentran los botaderos N.º 1 y 3.

Los resultados de los parámetros evaluados en la vigilancia ambiental, realizada en la época de avenida (2019), se muestran en el Anexo 8. A continuación, se presentan solamente los resultados de los parámetros que superaron los ECA para aqua 2015, categoría 3 (D.S. N.º 015-2015-MINAM) para los cuerpos de agua superficial; siendo referencial la comparación para los afloramientos subterráneos y aqua subterránea (piezómetro). Los efluentes minero metalúrgicos fueron comparados con los Límites Máximos Permisibles (Decreto Supremo N.° 010-2010-MINAM).

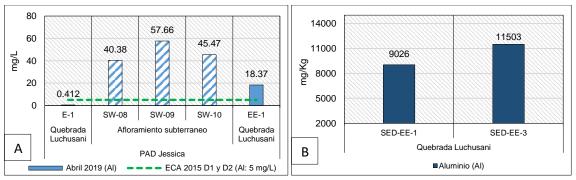
Asimismo, en el Anexo 8 se presenta los resultados de sedimentos, los cuales fueron comparados de manera referencial con los valores de la guía de calidad ambiental para sedimento en cuerpos de agua dulce de Canadá (Canadian Environmental Quality Guidelines - Sediment Quality Guidelines for Protection of Aquatic Life - Fresh water), en adelante norma canadiense. A continuación, se presentan los resultados de los parámetros que superaron la norma mencionada.

5.1. Zona 1 – Microcuenca Huarucani

5.1.1. Calidad de agua y sedimento


PAD Jessica

Las concentraciones de aluminio, cobalto, cobre, hierro y manganeso se incrementaron aguas abajo (EE-1) de los afloramientos provenientes del PAD Jessica (SW-08, SW-09 y SW-10) hasta incumplir con los ECA para agua 2015, categoría 3 en comparación con el punto E-1, ubicado aguas arriba (Figuras 5.2A, 5.4A, 5.5A, 5.6A y 5.7A); a diferencia del pH que disminuyó de 7,76 a 3,83 unidades (Figura 5.1A). Asimismo, la conductividad (Figura 5.1B) y las concentraciones de arsénico (Figura 5.3A), cadmio, cromo, níquel, selenio, zinc y sulfatos se incrementaron, pero no excedieron el estándar mencionado (Anexo 8).

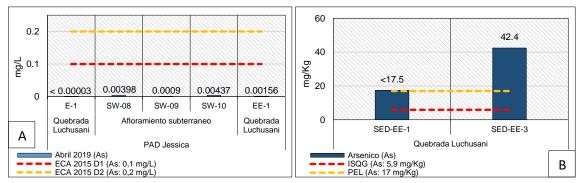
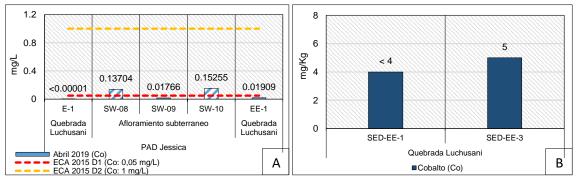
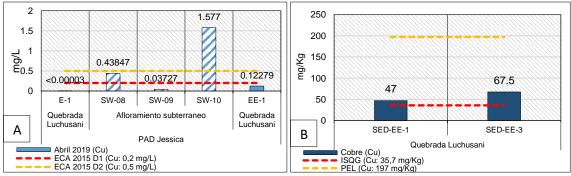

Respecto a los sedimentos, la concentración de cobre en los puntos evaluados aguas abajo del PAD (SED-EE-1, SED-EE-3) excedieron el nivel ISQG de la normativa canadiense (Figura 5.5B), mientras que el arsénico (SED-EE-3) excedió el valor PEL de la norma mencionada (Figura 5.3B). Además, el sedimento de estos puntos presentaron aluminio (9026 mg/kg y 11503 mg/kg), cobalto (<4 mg/kg y 5 mg/kg), hierro (26411 mg/kg y 36 489 mg/kg) y manganeso (310 mg/kg y 203 mg/kg) que estarían influyendo en la calidad del agua debido a que se encuentran en un medio ácido (Figuras 5.2B, 5.4B, 5.6B y 5.7B). Cabe indicar, que los parámetros antes mencionados no cuentan con un estándar en la norma canadiense.

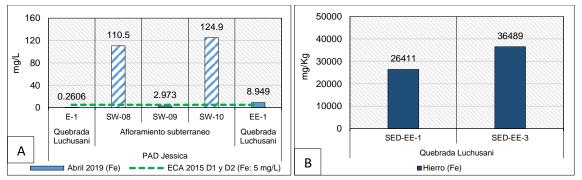
Asimismo, no se descarta posibles filtraciones de aguas ácidas en este tramo porque los afloramientos evaluados presentaron pH ácido y concentraciones de aluminio, manganeso (SW-08, SW-09 y SW-10); cobalto y hierro (SW-08, SW-10) que excedieron referencialmente los ECA para aqua 2015 (Figuras 5.1A, 5.2A, 5.7A, 5.4A y 5.6A) y a la fecha de la evaluación se encontraron colectadas en pozas impermeabilizadas con

geomembrana; sin embargo, no se descarta la posible filtración del afloramiento (SW-10), debido a que en la parte baja de esta poza se observó un flujo de agua en dirección a la quebrada Luchusani.

Figura 5.1. Unidades de pH (A), conductividad eléctrica (B) y concentración de sulfatos (C) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Figura 5.2. Concentración de aluminio en agua (A) y sedimento (B) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios


Figura 5.3. Concentración de arsénico en agua (A) y sedimento (B) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

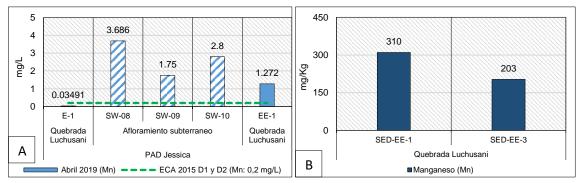

Figura 5.4. Concentración de cobalto en agua (A) y sedimento (B) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Figura 5.5. Concentración de cobre en agua (A) y sedimento (B) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Figura 5.6. Concentración de hierro en agua (A) y sedimento (B) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

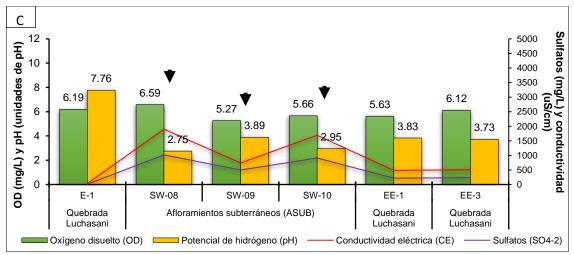


Figura 5.7. Concentración de manganeso en agua (A) y sedimento (B) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Como fue descrito, la quebrada Luchusani (E-1) se caracterizó por ser básica (7,76); sin embargo, aguas abajo de los afloramientos subterráneos captados (SW-08, SW-09 y SW-10) se registraron características ácidas (3,83) en el cauce principal de la quebrada Luchusani (EE-1). A diferencia del pH, los sulfatos y la conductividad eléctrica presentaron incrementos aguas abajo (Figura 5.8C). Los afloramientos mencionados se encontraron colectados en pozas impermeabilizadas con geomembrana (Figura 5.8A); sin embargo, no se descarta la posible filtración del afloramiento SW-10, debido a que en la parte baja de esta poza se observó un flujo de agua en dirección a la quebrada Luchusani (Figura 5.8B).

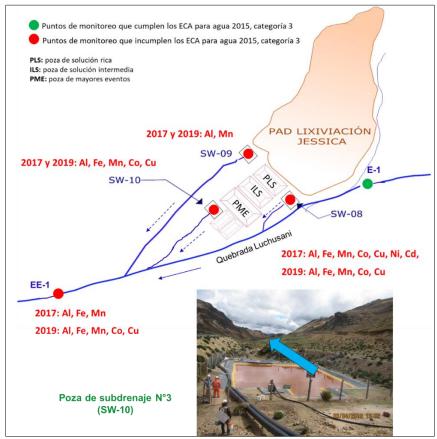
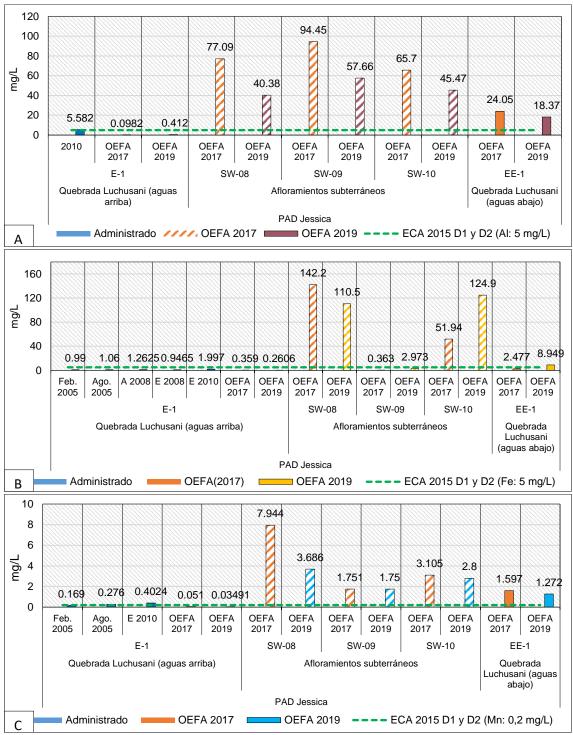


Figura 5.8. Poza de subdrenaje N.° 3 (SW-10) (A), flujo de agua en dirección a la quebrada Luchusani - SW-10 (B) y comportamiento de los parámetros de campo y sulfatos (C)


Figura 5.8. Poza de subdrenaje N.° 3 (SW-10) (A), flujo de agua en dirección a la quebrada Luchusani - SW-10 (B) y comportamiento de los parámetros de campo y sulfatos ▼: Representa los tributarios

En la Figura 5.9, se observa que el punto E-1 ubicado aguas arriba de los afloramientos captados (SW-08, SW-09 y SW-10) no superó los ECA para agua 2015, categoría 3, en las evaluaciones realizadas por el OEFA en 2017 y 2019; sin embargo, los afloramientos mencionados y el punto ubicado aguas abajo de ellos en la quebrada Luchusani (EE-1) si superaron la normativa mencionada para metales como aluminio, hierro y manganeso.

Figura 5.9. Metales que superaron el ECA para agua 2015 en los puntos de monitoreo E-1, SW-08, SW-09, SW-10 y EE-1 en las evaluaciones realizadas por el OEFA en 2017 y 2019

Las concentraciones de aluminio, hierro, manganeso, cobalto y cobre fueron superiores en el punto aguas abajo de los afloramientos subterráneos captados (EE-1) respecto al punto aguas arriba (E-1); sin embargo, se observa una disminución en la concentración de la mayoría de metales como aluminio (Figura 5.10A) y manganeso (Figura 5.10C) en 2019 respecto a la evaluación realizada por el OEFA en 2017 a excepción del hierro (Figura 5.10B) cobalto y cobre.

Figura 5.10. Concentración histórica de aluminio (A), hierro (B) y manganeso (C) en los puntos de monitoreo E-1, SW-08, SW-09, SW-10 y EE-1.

Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

STEC: Subdirección Técnica Científica

Decenio de la Igualdad de Oportunidades para Mujeres y Hombres Año de la Lucha contra la Corrupción y la Impunidad

Botadero Jessica

En la quebrada Luchusani, las concentraciones de aluminio, cobalto, cobre, hierro y manganeso se incrementaron aguas abajo (EE-4) de los afloramientos subterráneos captados y del efluente minero proveniente del botadero Jessica (V-J) hasta incumplir con los ECA para agua 2015, categoría 3, en comparación con el punto EE-3, ubicado aguas arriba (Figuras 5.12A, 5.14A, 5.15A 5.16A y 5.17A); a diferencia del pH que disminuyó ligeramente de 3,73 a 3,70 unidades (Figura 5.11A). Asimismo, la conductividad (Figura 5.11B) y las concentraciones de arsénico (Figura 5.13A), cadmio, cromo, níquel, selenio, zinc y sulfatos (Figura 5.11C) se incrementaron, pero no excedieron el estándar mencionado.

El afloramiento EE-02 presentó concentraciones de cromo, selenio, zinc y valores de conductividad (Figura 5.11B) que incumplieron referencialmente los ECA para agua 2015; asimismo, el afloramiento mencionado y el agua subterránea proveniente del piezómetro (PZ-01) presentaron pH ácido y concentraciones de aluminio, arsénico, cobalto, cobre, hierro, manganeso (Figuras 5.11A, 5.12A, 5.13A, 5.14A, 5.15A, 5.16A, 5.17A y 5.5A), níquel y cadmio que también incumplieron referencialmente la normativa señalada. Además, no se descarta posibles filtraciones de aguas ácidas en este tramo porque a la fecha de la evaluación se encontraron colectadas en pozas impermeabilizadas con geomembrana; sin embargo, también se observó que parte de estos afloramientos no son captados y se infiltraban en el suelo. Asimismo, todos los parámetros evaluados en el efluente V-J cumplieron con los LMP para efluentes minero metalúrgicos (2010).

Respecto a los sedimentos, la concentración de arsénico se incrementó aguas abajo del botadero Jessica, a diferencia del cobre que disminuyó (Figuras 5.13B y 5.15B). Cabe indicar, que el arsénico excedió el nivel PEL y el cobre excedió el nivel ISQG de la normativa canadiense en los puntos evaluados aguas arriba (SED-EE-3) y aguas abajo (SED-EE-4) de este botadero). Asimismo, los sedimentos de estos puntos también presentaron disminución de aluminio (de 11503 mg/kg a 9405 mg/kg) y cobalto (de 5 mg/kg a 4,1 mg/kg); mientras que hubo incremento de hierro (de 36 489 mg/kg a 48 365 mg/kg) y manganeso (de 203 mg/kg a 231 mg/kg) lo que estaría influyendo en la calidad del agua debido a que se encuentran en un medio ácido (Figuras 5.12A, 5.14A, 5.16A, 5.17A).

En el río Huarucani (E-5) los valores de pH y las concentraciones de arsénico, cobalto, cobre y hierro se incrementaron ligeramente en comparación con el punto EE-4, ubicado aguas arriba (Figuras 5.11A, 5.13A, 5.14A, 5.15A, 15.6A); a diferencia de la conductividad eléctrica y concentración de manganeso que disminuyeron (Figuras 5.12B, 5.17A); sin embargo, el pH, cobalto, cobre, hierro y manganeso excedieron los ECA para agua 2015 en ambos puntos (Figuras 5.11A,.5.14A, 5.15A, 5.16A, 5.17A).

Por otro parte, en el sedimento se observa el incremento de las concentraciones de aluminio, cobalto y manganeso (Figuras 5.12B, 5.14B y 5.17B); a excepción del arsénico, cobre, hierro y que disminuyeron (Figuras 5.13B, 5.15B y 5.16B), debido al aporte de la quebrada Huarucani (E-4) en donde todos los parámetros evaluados cumplieron con el ECA para agua a pesar de presentar arsénico que excedió el nivel PEL (Figura 5.13B) y también presentar las mayores concentraciones de metales como manganeso en el sedimento (Figura 5.17B) respecto a los puntos evaluados en la quebrada Luchusani (SED-EE-4 y SED-E-5) lo que indicaría la no influencia de los sedimentos en la calidad del agua, debido al pH cercano a la neutralidad de la quebrada Huarucani que no permite la liberación de dichos metales al aqua.

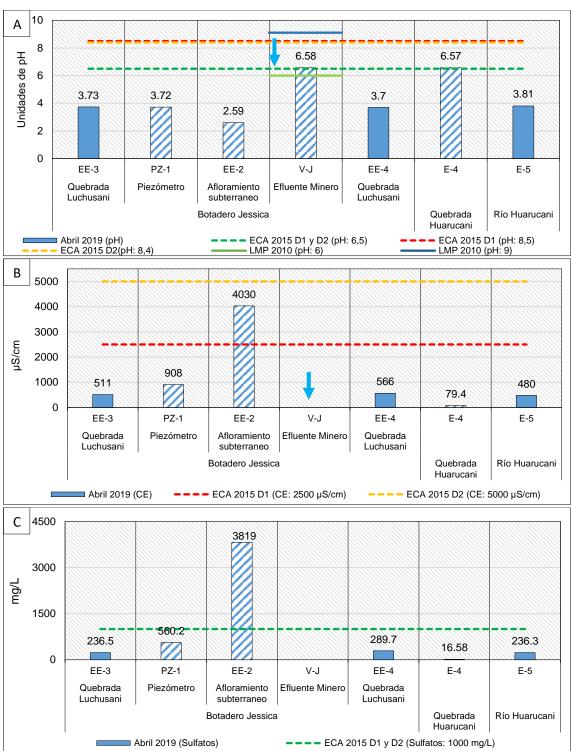


Figura 5.12. Unidades de pH (A), conductividad eléctrica (B) y concentración de sulfatos (C) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios : Representa los efluentes mineros

Troprocenta los endentes minores

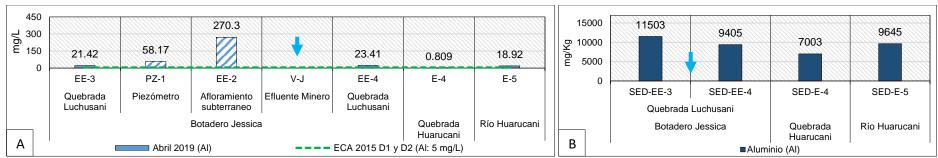


Figura 5.32. Concentración de aluminio en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

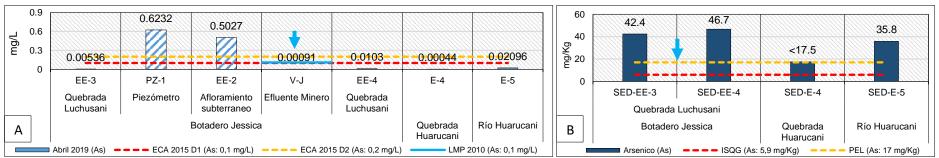


Figura 5.43. Concentración de arsénico en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

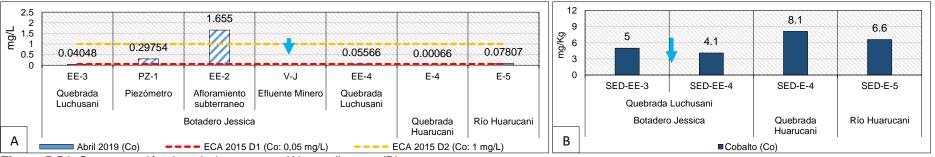


Figura 5.54. Concentración de cobalto en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios : Representa los efluentes mineros

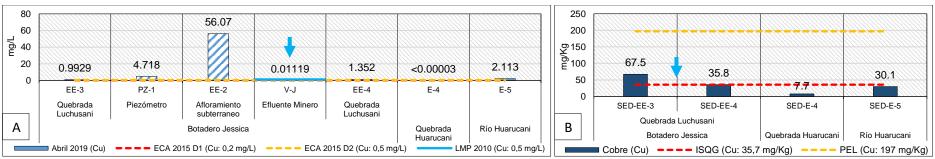


Figura 5.65. Concentración de cobre en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

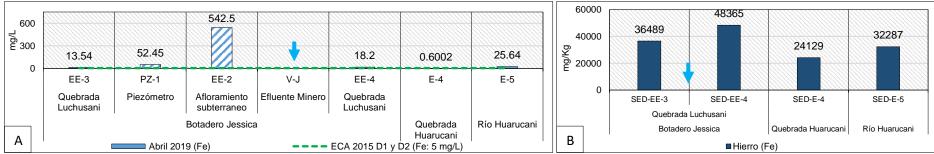


Figura 5.76. Concentración de hierro en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

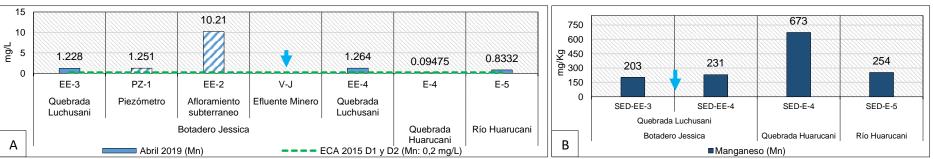
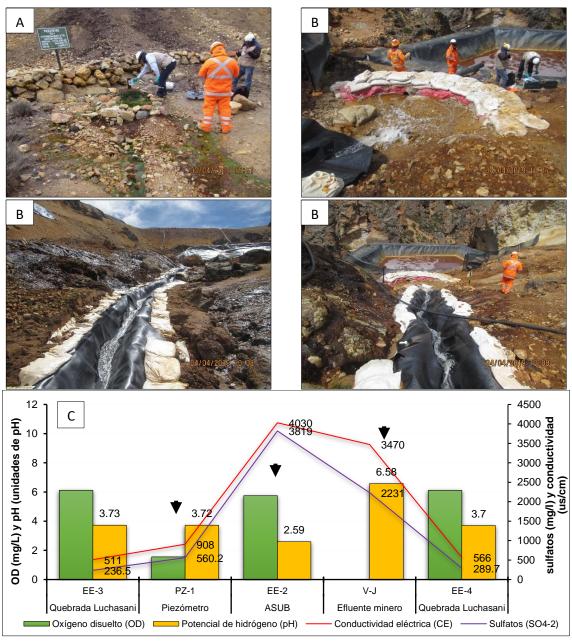



Figura 5.87. Concentración de Mn en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios : Representa los efluentes mineros

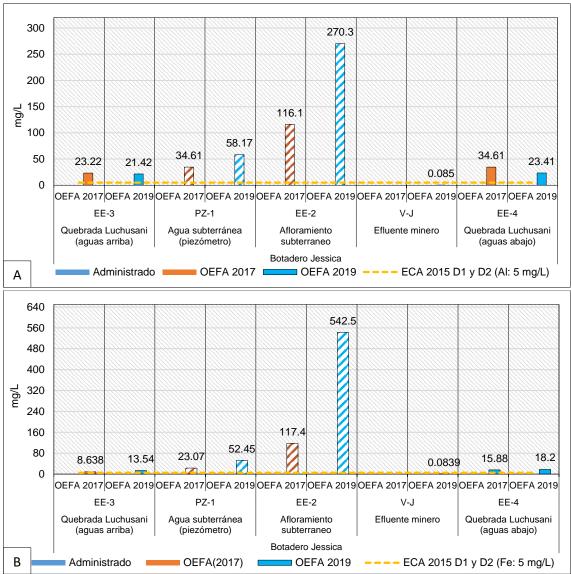

Como fue descrito, la quebrada Luchusani (EE-3) se caracterizó por ser ácida (3,73); sin embargo, luego de los afloramientos subterráneos captados y del efluente minero proveniente del botadero Jessica (V-J) se continúan registrando características ácidas aguas abajo (3,7) en el cauce principal de la quebrada Luchusani (EE-4); sin embargo, los sulfatos y la conductividad eléctrica presentaron incrementos (Figura 5.18C). Por lo que no se descarta las posibles filtraciones de aguas ácidas provenientes del afloramiento subterráneo y del piezómetro (PZ-1) pues se encontraron colectadas en pozas impermeabilizadas con geomembrana; sin embargo, también se observó que parte de estos afloramientos no son captados y se infiltraban en el suelo (Figuras 5.18A y B).

Figura 5.18. Filtración de la surgencia del piezómetro (A), filtración de la mezcla de los afloramientos y surgencia del piezómetro en el suelo (B), y comportamiento de los parámetros de campo y sulfatos (C)

▼: Representa los tributarios

El OEFA en 2017 también registró mayores concentraciones de aluminio y hierro en el punto EE-4, ubicado aguas abajo de los afloramientos subterráneos captados y del efluente minero proveniente del botadero Jessica (V-J) respecto al punto aguas arriba EE-3, superando en ambos puntos el ECA para agua 2015 (Figuras 5.19A y B); sin embargo, se observa una disminución en la concentración del aluminio en 2019 respecto a la evaluación realizada por el OEFA en 2017 (Figura 5.19A). Este mismo comportamiento fue registrado para el cadmio, cobalto y cobre a excepción del hierro (Figura 5.19B).

Figura 5.19. Concentración histórica de aluminio (A) y hierro (B) en los puntos de monitoreo EE-3, PZ-1, EE-2, V-J y EE-4

Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Asimismo, se resalta el progresivo incremento de la concentración de cadmio y cobre en el agua subterránea PZ-1 (piezómetro) a lo largo de los años (2011-2019) a excepción del aluminio (Figura 5.20A, B y C), pues evidencia la alteración del agua subterránea por la actividad minera. Cabe resaltar que el manganeso, cobalto y níquel presentaron el mismo comportamiento que el cadmio y cobre (Figura 5.20B y C).

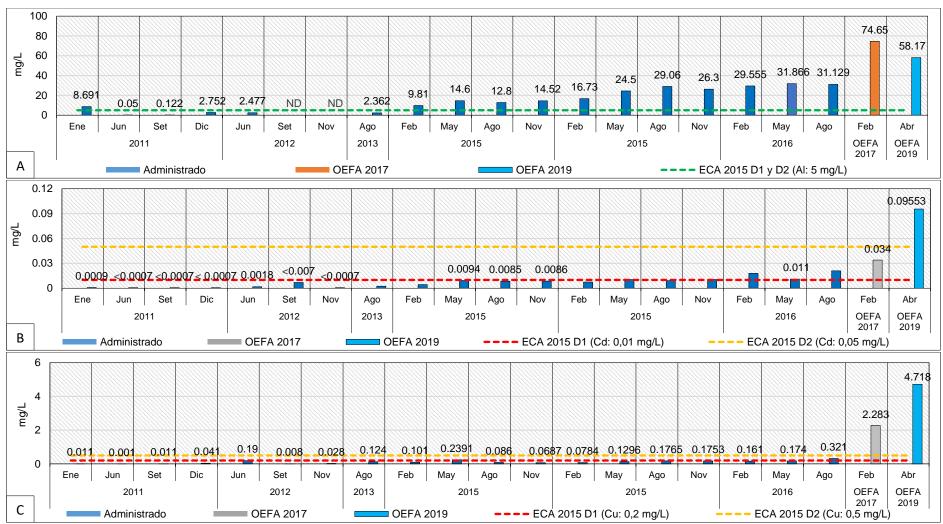


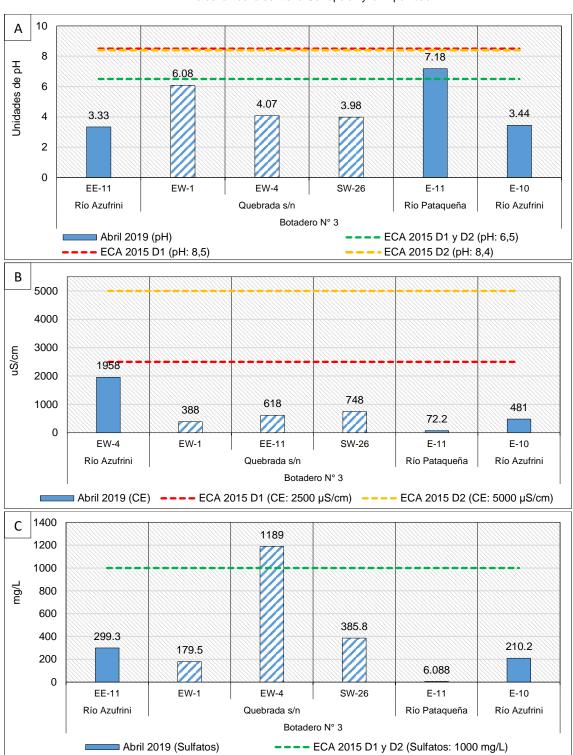
Figura 5.20. Concentración histórica de aluminio (A), cadmio (B) y cobre (C) en el punto de monitoreo PZ-1.

STEC: Subdirección Técnica Científica

Decenio de la Igualdad de Oportunidades para Mujeres y Hombres Año de la Lucha contra la Corrupción y la Impunidad

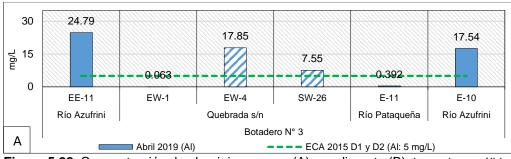
5.2. Zona 2 – Microcuenca Chacapalca

5.2.1. Calidad de agua y sedimento


Botadero N° 3

Las concentraciones de aluminio, cobalto y manganeso se incrementaron aguas abajo (SW-26) del drenaje captado proveniente del botadero N° 3 hasta incumplir con los ECA para agua 2015, categoría 3, en comparación con el punto EW-1 ubicado aguas arriba (Figuras 5.22A, 5.23A y 5.26A), a diferencia del pH que disminuyó de 6,08 a 3,98 unidades (Figuras 5.21A). Asimismo, la conductividad y las concentraciones de sulfatos, cobre, hierro y níquel se incrementaron, pero no excedieron el estándar mencionado (Figuras 5.21B, 5.21C, 5.24A, 5.25A y 5.27A), a excepción del manganeso que incumplió los ECA para agua 2015 aguas arriba y aguas abajo del drenaje proveniente del botadero N° 3 (Figura 5.26A).

Las concentraciones de aluminio, cobalto, cobre, hierro y manganeso disminuyeron aguas abajo (E-10) del río Pataqueña (E-11) y de la quebrada sin nombre (SW-26) e incumplieron los ECA para agua 2015, categoría 3, en comparación con el punto EE-11, ubicado aguas arriba (Figuras 5.22A, 5.23A, 5.24A, 5.25A, y 5.26A). Sin embargo, el pH aumentó ligeramente de 3,33 a 3,44 unidades (Figuras 5.21A), debido al aporte del río Pataqueña quien presentó pH neutro y baja concentraciones de metales que cumplieron con los estándares mencionado. Asimismo, las concentraciones de sulfatos y níquel disminuyeron y no excedieron el ECA para agua (Figuras 5.21C y 5.27A).


Respecto a los sedimentos, la concentración de cobalto, cobre, hierro, manganeso y níquel disminuyeron a excepción del aluminio en el río Azufrini (SED-E-10), ubicado aguas abajo de la quebrada Sin nombre y río Pataqueña, en comparación con el punto SED-EE-11 ubicado aguas arriba (Figuras 5.23B, 5.24B, 5.25B, 5.26B y 5.27B). De todos los metales mencionados solo el cobre presenta estándar de comparación y no excedió los niveles ISQG y PEL de la norma canadiense (Figuras 5.24B). Además, la quebrada Sin nombre (SED-SW-26) presentó cobre que excedió el valor ISQG y fue mayor a todos los puntos evaluados en este tramo (Figura 5.24B).

En el sedimento del río Pataqueña (SED-E-11), tributario del río Azufrini, también se registró mayores concentraciones de cobalto, manganeso y níquel que los puntos aguas arriba (SED-EE-11) y aguas abajo (SED-E-10) del río Azufrini (Figuras 5.23B, 5.26B y 5.27B); sin embargo, estas concentraciones tampoco influenciaron en el sedimento del río Azufrini porque se registró una disminución en la concentración de aguas arriba (SED-EE-11) a aguas abajo (SED-E-10). Además, en el río Pataqueña los parámetros evaluados cumplieron con el ECA para agua lo que indicaría la no influencia de los sedimentos en la calidad del agua, debido a su pH neutro que no permite la liberación de dichos metales al aqua.

Figura 5.29. Unidades de pH (A), conductividad eléctrica (B) y concentración de sulfatos (C) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios : Representa los efluentes mineros

Decenio de la Iqualdad de Oportunidades para Mujeres y Hombres

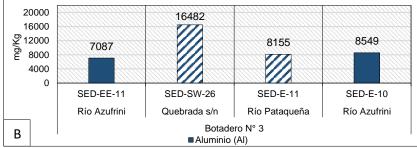
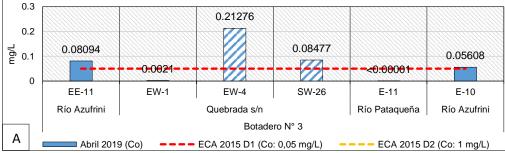



Figura 5.22. Concentración de aluminio en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Año de la Lucha contra la Corrupción y la Impunidad

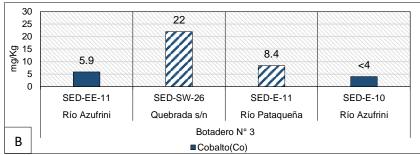
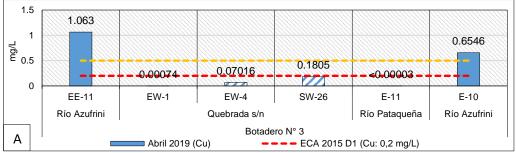



Figura 5.23. Concentración de cobalto en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

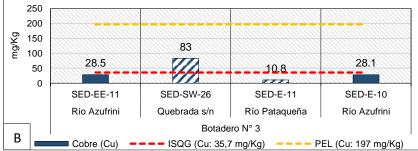


Figura 5.24. Concentración de cobre en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

57132

SED-E-10

Río Azufrini

18359

SED-E-11

Río Pataqueña

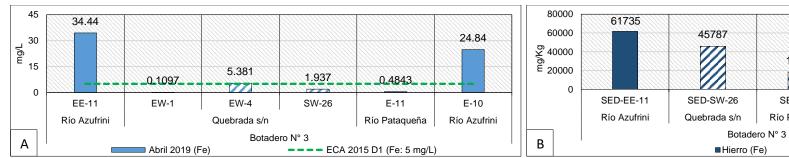


Figura 5.25. Concentración de hierro en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

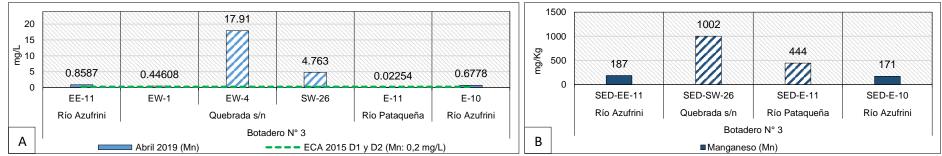


Figura 5.26. Concentración de manganeso en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

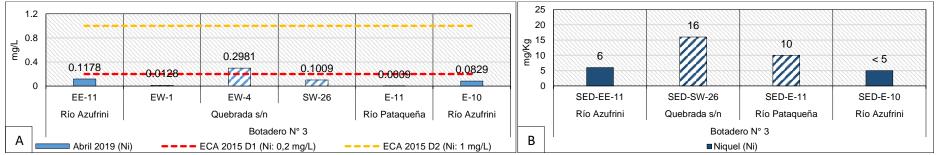


Figura 5.27. Concentración de níquel en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Como fue descrito, la quebrada sin nombre (EW-1) se caracterizó por ser ligeramente neutra (6,08 unidades); sin embargo, luego del aporte del drenaje captado proveniente del botadero N° 3 (EW-4) se registró un pH ácido (3,98 unidades). Asimismo, tanto los sulfatos como la conductividad eléctrica (Figura 5.28C) y las concentraciones de aluminio cobalto, cobre, hierro manganeso y níquel se incrementaron agua abajo (SW-26) respecto al punto EW-1 ubicado aguas arriba; aunque, solo el aluminio, cobalto y manganeso superaron los ECA para agua 2015 categoría 3 (Figuras 5.22A, 5.23A y 5.26A), debido a que se observó que parte de este drenaje que no era captado llegaba a la quebrada Sin Nombre por su cauce (Figura 5.28B). Durante el monitoreo se observó que parte del drenaje EW-4 era captado mediante un canal y poza impermeabilizada con geomembrana (Figura 5.28A) y conducida por una tubería hasta una planta de tratamiento (Figura 6.28B).

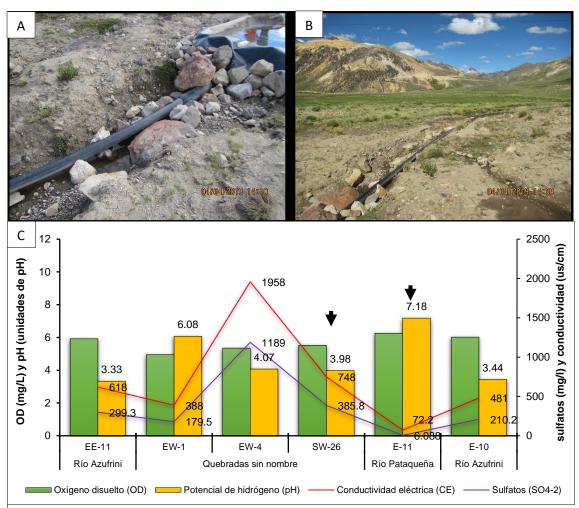
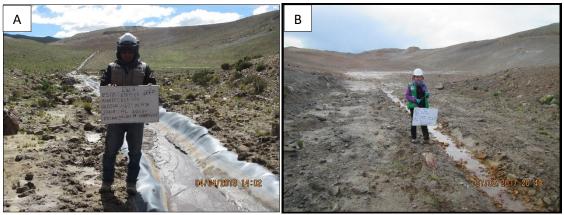
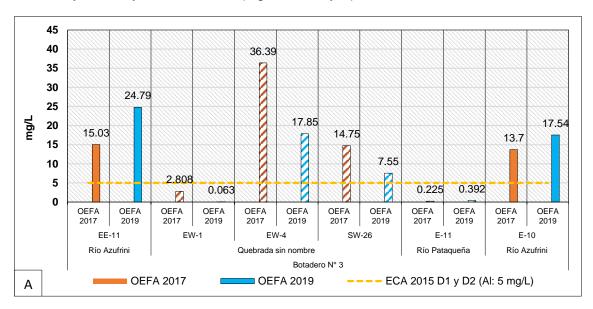



Figura 5.28. Filtración del drenaje EW-4 proveniente del Botadero N° 3 (A), drenaje captado (B) y comportamiento de los parámetros de campo y sulfatos (C)

▼: Representa los tributarios


El río Azufrini se caracterizó por tener pH ácido (3,33 unidades) en el punto EE-11, luego del aporte de la quebrada sin nombre (SW-26) y del río Pataqueña (E-11) hubo un ligero incremento en el pH (3,44 unidades); sin embargo, se continúan registrando características ácidas en el cauce principal del río Azufrini (E-10). Por otro lado, la conductividad eléctrica y los sulfatos presentaron disminución en sus valores aguas abajo (E-10) debido al aporte de la quebrada Pataqueña que presentó baja concentración de sulfatos, conductividad eléctrica a diferencia de la quebrada Sin Nombre (Figura 5.28C).

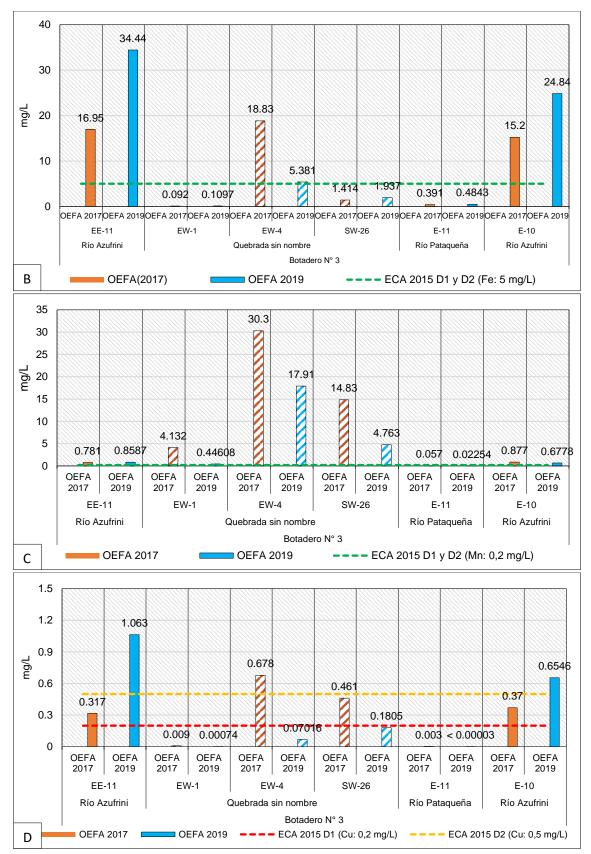

En la quebrada Sin Nombre, las concentraciones de aluminio, hierro, manganeso y cobre fueron superiores en el punto aguas abajo (SW-26) del drenaje captado (EW-4) respecto al punto aguas arriba (EW-1); sin embargo, se observa una disminución en la concentración de la mayoría de metales como aluminio, manganeso y cobre en 2019 respecto a la evaluación realizada por el OEFA en 2017 (Figuras 5.30A, 5.30C y 5.30D), a excepción del hierro (Figura 5.30B), debido a la implementación de canales impermeabilizados, tratamiento del suelo y revegetación en el punto EW-4 proveniente del drenaje botadero N° 3 en 2019 a diferencia del 2017 (Figuras 5.29 A y B).

Figura 5.29. Drenaje proveniente del botadero N° 3 captado en 2019 (A) y no captado en 2017 (B)

Por otro lado, en el río Azufrini las concentraciones de aluminio y hierro disminuyen aguas abajo (E-10) de la quebrada Sin Nombre y río Pataqueña en comparación con el punto aguas arriba (EE-11); sin embargo, se observa un incremento en las concentraciones de los metales mencionados en ambos puntos en el 2019 respecto a la evaluación realizada por el OEFA en 2017 (Figuras 5.30A y B). Similar comportamiento se observó en el cobalto, a excepción del manganeso y cobre que aumentaron sus concentraciones aguas abajo (E-10) en 2017, y disminuyeron en el 2019 (Figura 5.30C y D).

Figura 5.30. Concentración histórica Concentración histórica de aluminio (A), hierro (B), manganeso (C) y cobre (D)

Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

STEC: Subdirección Técnica Científica

Decenio de la Igualdad de Oportunidades para Mujeres y Hombres Año de la Lucha contra la Corrupción y la Impunidad

Botadero N° 1

En el río Chacapalca, las concentraciones de sulfatos y manganeso se incrementaron aguas abajo (M-2) del efluente minero proveniente del botadero N° 1 (V-1), en comparación con el punto M-1 ubicado aguas arriba; sin embargo, solo el manganeso incumplió con los ECA para agua 2015, categoría 3, tanto aguas arriba como aguas abajo del río Chacapalca (Figuras 5.31C y 5.36A).

Por otro lado, el pH y las concentraciones de aluminio, cobalto, cobre, hierro y níquel disminuyeron aguas abajo (M-2) del efluente minero proveniente del botadero N° 1 (V-1) en comparación con el punto M-1, ubicado aguas arriba (Figuras 5.31A, 5.32A, 5.33A, 5.34A, y 5.35A y 5.37A); sin embargo, el pH, aluminio, cobre y hierro en ambos puntos incumplieron con los ECA para agua 2015, categoría 3 (Figuras 5.31A, 5.32A, 5.34A y 5.35A). Asimismo, todos los parámetros evaluados en el efluente V-1 cumplieron con los LMP para efluentes minero metalúrgicos (2010).

Respecto a los sedimentos, la concentración de aluminio, cobalto, cobre, hierro, manganeso y níquel disminuyeron aguas abajo (SED-M-2) del efluente minero proveniente del botadero N° 1 (V-1) en comparación con el punto evaluado aguas arriba (SED-M-1) (Figuras 5.32B, 5.33B, 5.34B, 5.35B, 5.36B y 5.37B). De todos los metales mencionados solo el cobre presenta estándar de comparación y no excedió los niveles ISQG y PEL de la norma canadiense en el punto SED-M-2; sin embargo, excedió el nivel ISQG en el punto aguas arriba SED-M-1 (Figura 5.34B).

En los puntos de monitoreo EE-15 y E-39, ubicados aguas abajo del embalse del río Chacapalca, se registró incrementos de las unidades de pH y la concentración de sulfatos, aluminio, cobalto, cobre, hierro, manganeso y níquel en comparación con el punto M-2 ubicado aguas arriba (Figura 5.31A, 5.31C, 5.32A, 5.33A, 5.34A, 5.35A, 5.36A y 5.37A); en donde solo excedieron el aluminio, cobre, hierro y manganeso los ECA para agua 2015, categoría 3, tanto en los puntos evaluados aguas abajo como aguas arriba de este embalse (Figuras 5.32A, 5.34A, 5.35A y 5.36A).

Similar comportamiento presentó el aluminio, cobalto, cobre, manganeso y níquel en el sedimento a excepción del hierro (Figuras 5.32B, 5.33B, 5.34B, 5.36B, 5.37B y 5.35B). Cabe indicar, que la mayor concentración de los metales mencionados en agua y sedimento se registró en los puntos evaluados en el embalse.

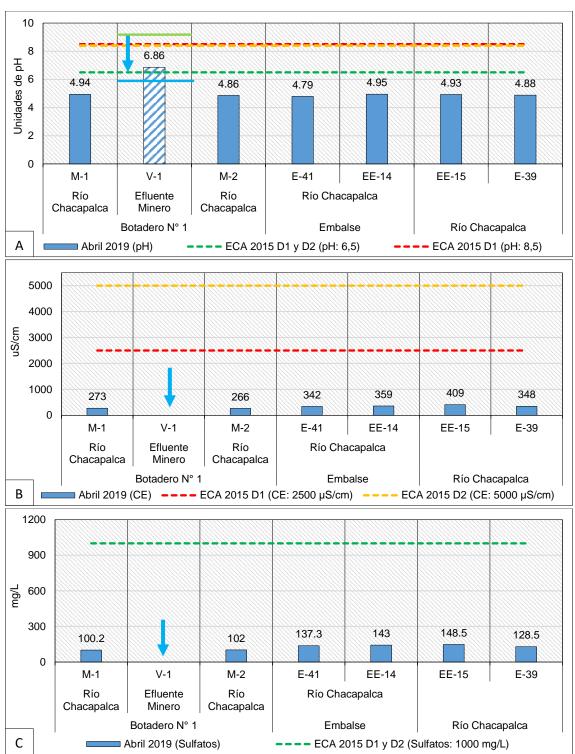


Figura 5.31. Unidades de pH (A), conductividad eléctrica (B) y concentración de sulfatos (C) Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios : Representa los efluentes mineros

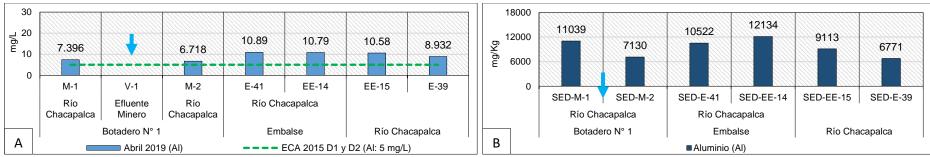


Figura 5.32. Concentración de aluminio en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

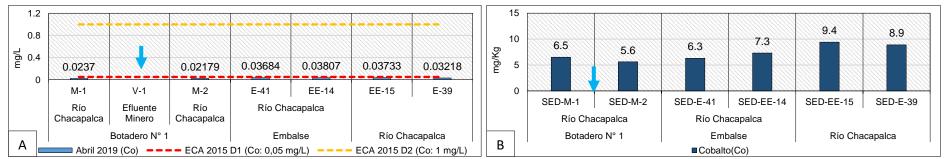


Figura 5.33. Concentración de cobalto en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

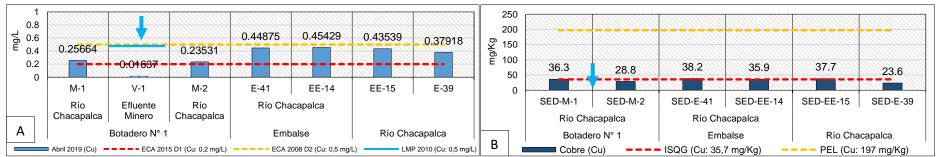


Figura 5.34. Concentración de cobre en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios : Representa los efluentes mineros

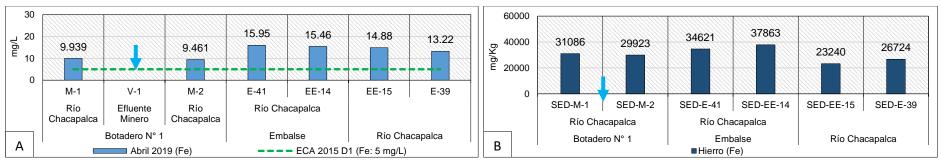


Figura 5.35. Concentración de hierro en aqua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

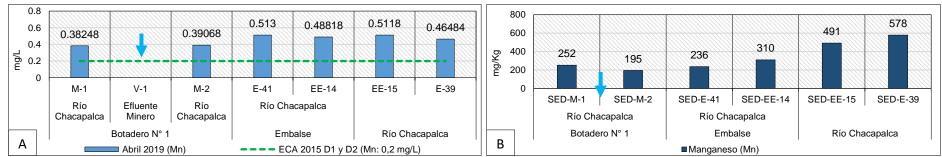


Figura 5.36. Concentración de Mn en agua (A) y sedimento (B). Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

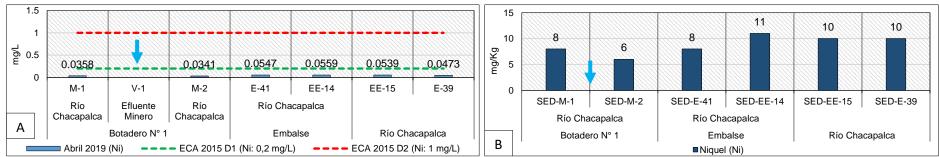
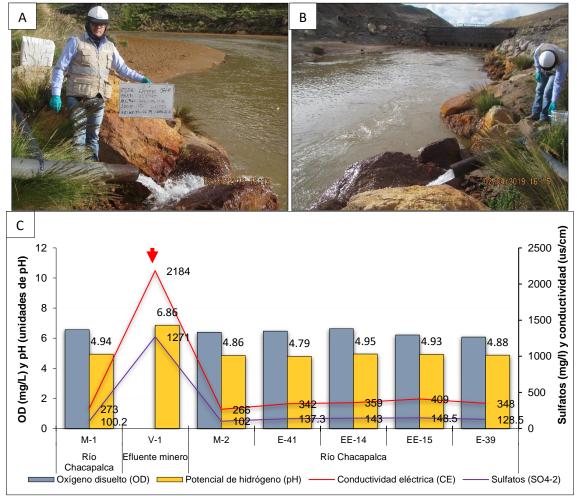
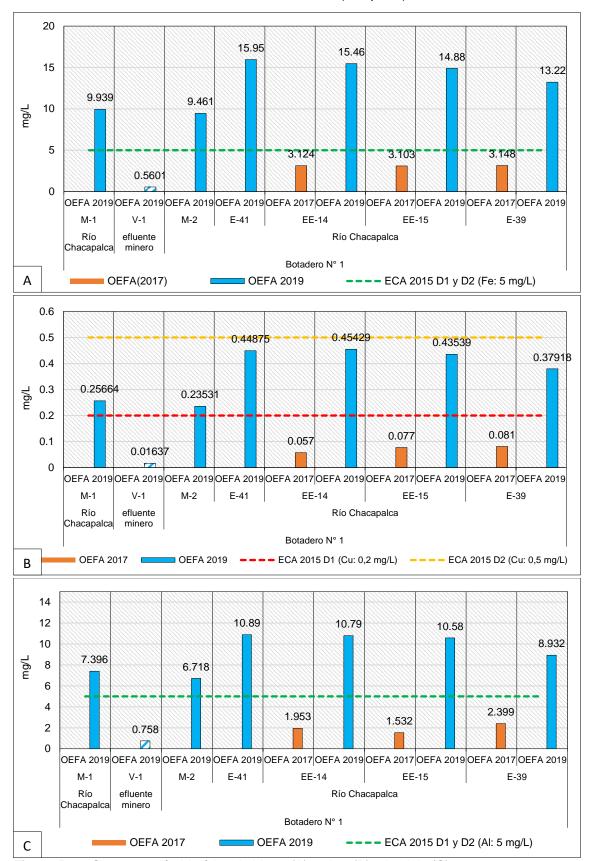
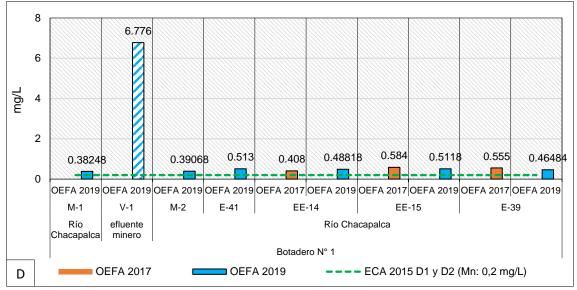


Figura 5.37. Concentración de níquel en agua (A) y sedimento (B).Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios Representa los efluentes mineros

Como fue descrito, el río Chacapalca se caracterizó por tener pH ácido (4,94) en el punto M-1, luego del aporte del efluente minero V-1 hubo una ligera disminución en el pH aguas abajo (Figura 5.38C); por lo que se continúan registrando características ácidas (4,86) en el cauce principal del río Chacapalca (M-2). Cabe resaltar que el efluente minero (V-1) presentó pH cercano a la neutralidad y registró la mayor conductividad eléctrica y concentración de sulfatos que el resto de puntos evaluados (Figura 5.38C). Sin embargo, no influye en el río Chacapalca por la diferencia de caudales entre el efluente minero y el río Chacapalca (Figuras 5.38A y B).


Figura 5.38. Efluente minero V-1 (A), río Chacapalca (B) y comportamiento de los parámetros de campo y sulfatos (C)

T: Representa el efluente minero

Las concentraciones de metales como hierro, cobre y aluminio en el punto E-39 y en el embalse del río Chacapalca (EE-14) se incrementaron en el 2019 respecto al 2017 (Figuras 5.39A, 5.39B y 5.39C), a excepción del manganeso; sin embargo, este metal superó los ECA para agua 2015 en todos los puntos evaluados en el río Chacapalca en ambos años (Figura 5.39D).

Figura 5.39. Concentración histórica de hierro (A), cobre (B), aluminio (C) y manganeso Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

Figura 5.39. Concentración histórica de hierro (A), cobre (B), aluminio (C) y manganeso Los colores sólidos representan el cauce principal, los colores en tramas representan los tributarios

6. CONCLUSIONES

PAD Jessica

Los afloramientos subterráneos captados (SW-08, SW-09 y SW-10) provenientes del PAD Jessica presentaron pH ácido y concentraciones elevadas de aluminio, cobalto, cobre, hierro, manganeso y sulfato. Parte de estos afloramientos que no son captados se infiltran en el suelo y forman un flujo en dirección a la quebrada Luchusani, los cuales están alterando la calidad de esta quebrada, debido a que aguas abajo de los afloramientos captados el pH disminuyó de 7,76 a 3,73 unidades y las concentraciones de aluminio, cobalto, cobre, hierro, manganeso y sulfato se incrementaron hasta incumplir con los ECA para agua 2015, categoría 3 en comparación con el punto E-1, ubicado aguas arriba.

La presencia de aluminio, cobalto, cobre, hierro y manganeso en el sedimento de esta quebrada estaría influyendo en la calidad del agua por encontrarse en un medio ácido. Por otro lado, al comparar los resultados de la presente evaluación con los resultados del 2017 se observa una disminución en la concentración de aluminio y manganeso a excepción del hierro, cobalto y cobre que se incrementaron.

Botadero Jessica

El afloramiento subterráneo (EE-2) y el piezómetro (PZ-1) provenientes del Botadero Jessica presentaron pH ácido y concentraciones elevadas de aluminio, cobalto, cobre, hierro, manganeso y sulfatos. Parte de estos afloramientos que no son captados se infiltran en el suelo y forman un flujo en dirección a la quebrada Luchusani, los cuales están alterando la calidad de esta quebrada, debido a que aguas abajo de los afloramientos captados el pH disminuyó de 3,73 a 3,70 unidades y las concentraciones de aluminio, cobalto, cobre, hierro, y manganeso se incrementaron en comparación con el punto EE-3, ubicado aguas arriba. Cabe indicar, que los metales mencionados incumplieron los ECA para agua 2015, categoría 3 tanto en aguas arriba como en aguas abajo.La presencia de aluminio, cobalto, cobre, hierro y manganeso en el sedimento de esta quebrada estaría influyendo en la calidad del agua por encontrarse en un medio ácido. Por otro lado, al comparar los resultados de la

presente evaluación con los resultados del 2017 se observa una disminución en las concentraciones de aluminio, cadmio, cobalto, cobre y manganeso a excepción del hierro. Asimismo, se resalta el progresivo incremento de las concentraciones de cadmio, cobre, manganeso, cobalto y níquel en el agua subterránea PZ-1 (piezómetro), ubicado al pie del depósito de desmonte Jessica, a lo largo de los años (2011-2019) a excepción del aluminio. Asimismo, todos los parámetros evaluados en el efluente V-J cumplieron con los LMP para efluentes minero metalúrgicos (2010).

Botadero N.° 3

El drenaje proveniente del botadero N.º 3 (EW-4) presentó pH ácido y concentraciones elevadas de aluminio, cobalto y manganeso. Parte de este drenaje que no era captado llegaba a la quebrada Sin Nombre por su cauce, el cual está alterando la calidad de esta quebrada, debido a que aguas abajo (SW-26) del drenaje captado el pH disminuyó de 6,08 a 3,98 unidades y las concentraciones de aluminio, cobalto, y manganeso se incrementaron hasta incumplir con los ECA para agua 2015, categoría 3, en comparación con el punto EW-1, ubicado aguas arriba.

La presencia de aluminio, cobalto y manganeso en el sedimento de esta quebrada estaría influyendo en la calidad del agua por encontrarse en un medio ácido. Por otro lado, al comparar los resultados de la presente evaluación con los resultados del 2017 se observa una disminución en la concentración de aluminio, cobre y manganeso a excepción del hierro.

En el río Azufrini las concentraciones de manganeso, cobalto, cobre, aluminio, hierro disminuyeron aguas abajo (E-10) de las confluencias de la quebrada Sin Nombre y río Pataqueña en comparación con el punto aguas arriba (EE-11); sin embargo, se observa un incremento en las concentraciones de los metales mencionados en ambos puntos en el 2019 respecto a la evaluación realizada por el OEFA en 2017 a excepción de manganeso y cobre.

Botadero N° 1

Los puntos evaluados aguas arriba (M-1) y aguas abajo (M-2) del efluente minero V-1, proveniente del botadero N° 1, en el río Chacapalca presentaron pH ácido y concentraciones elevadas de aluminio, cobre, hierro y manganeso; sin embargo, solo el manganeso incumplió con los ECA para agua 2015, categoría 3, en ambos puntos. Por otro lado, el pH disminuyó ligeramente de 4,94 a 4,86 unidades y las concentraciones de aluminio, cobre, y hierro disminuyeron respecto al punto (M-1) e incumplieron con los estándares mencionados; asimismo, los sulfatos como la conductividad eléctrica presentaron valores similares aguas arriba y aguas abajo del efluente minero.

En el sedimento las concentraciones de aluminio, cobalto, cobre, hierro, manganeso y níquel disminuyeron en el punto SED-M-2 en comparación con el punto ubicado aguas arriba (SED-M-1), esto se debería al aporte de los tributarios con baja concentración de dichos metales y no influyeron en el río Chacapalca por la diferencia de caudales entre el efluente minero y el río. Por otro lado, al comparar los resultados de la presente evaluación con los resultados del 2017 se observa un incremento en la concentración de hierro, cobre y aluminio a excepción del manganeso.

Los puntos de monitoreo EE-15 y E-39, ubicados aguas abajo del embalse del río Chacapalca, presentaron pH ácido e incrementos en las concentraciones de sulfatos, aluminio, cobalto, cobre, hierro, manganeso y níquel en comparación con el punto M-2

STEC: Subdirección Técnica Científica

Decenio de la Igualdad de Oportunidades para Mujeres y Hombres Año de la Lucha contra la Corrupción y la Impunidad

ubicado aguas arriba; en donde solo excedieron el aluminio, cobre, hierro y manganeso los ECA para agua 2015, categoría 3, tanto aguas abajo como aguas arriba de este embalse. Similar comportamiento presentó el aluminio, cobalto, cobre, manganeso y níquel en el sedimento a excepción del hierro.

Cabe indicar, que la mayor concentración de los metales mencionados en agua y sedimento se registró en los puntos evaluados en el embalse. Por otro lado, al comparar los resultados de la presente evaluación con los resultados del 2017 superaron los ECA para agua 2015. Asimismo, todos los parámetros evaluados en el efluente V-1 cumplieron con los LMP para efluentes minero metalúrgicos (2010).

7. ANEXOS

- Anexo 1: Mapa de ubicación de la UM Arasi
- Anexo 2: Mapa de ubicación de los puntos de monitoreo
- Anexo 3: Ficha fotográfica
- Anexo 4: Datos de campo
- Anexo 5: Certificados de calibración de los equipos
- Anexo 6: Cadena de custodia
- Anexo 7: Informes de ensayo de laboratorio
- Anexo 8: Resultados comparados con la normativa correspondiente
- Anexo 9: Actas de reunión con la DSEM

Es cuanto informamos a usted para los fines pertinentes.

Atentamente:

[LFAJARDO]	[LANCCO]
------------	----------

Visto este informe la Dirección de Evaluación Ambiental ha dispuesto su aprobación.

Atentamente:

"Esta es una copia auténtica imprimible de un documento electrónico archivado por el OEFA, aplicando los dispuesto por el Art. 25 de D.S. 070-2013-PCM y la Tercera Disposición Complementaria Final del D.S. Nº 026-2016-PCM. Su autenticidad e integridad pueden ser contrastadas a través de la siguiente dirección web: https://sistemas.oefa.gob.pe/verifica e ingresando la siguiente clave: 00295314"

